MICROTUNE
broadband media access for the new century

FRONTEND 4049 FM5

TARGET SPECIFICATION ELECTRICAL DATA

1. Description:

The frontend 4049 FM5 is specially designed for multimedia applications. It includes TV as well as FM reception possibility. TV reception standard are B/G; I, D/K, L, L`. The frontend includes a hyperband tuner which covers the frequency range from 45 to 865 MHz and an IF-part with SAWfilter, IF-amplifier, video- and sound demodulator. So the AF signal is available at the audio output terminal, the CVBS signal is available at the video output terminal. Also a $2^{\text {nd }}$ IF output is provided, which allows external sound demodulation for stereo and NICAM reception. A video buffer is built in which makes a direct connection to 75Ω inputs possible. The reception frequency range is divided in VHF low, VHF high and UHF.
VHFlow part of the tuner is used for FM reception also. Complete FM signal processing including demodulation and stereo decoding is built in. Baseband signals L (left) and R (right) as well as MPX (Baseband Multiplex signal) are on pins available.
Band, standard selection and tuning are done via $I^{2} \mathrm{C}$-bus, completely. Also a digital AFC-function can be realized, because the AFC-voltage generated by the IF-demodulator is fed to an analogue/digital converter which is integrated in the IF demodulator-IC and readable via $I^{2} \mathrm{C}$-bus. A DC/DC converter is built in. Therefore supply voltage is 5 V only.

2. Mechanical Characteristics:

2.1. Dimensions: according drawing $3 x 8168 \mathrm{GZ}$
2.2. Weight: appr. 52 g

PIN	
9	$I^{2} \mathrm{C}$ bus signal SCL
10	$I^{2} \mathrm{C}$ bus signal SDA
11	Address selection for $I^{2} \mathrm{C}$ bus
12	
13	
14	
15	
16	FM sound output R
17	FM sound output L
18	2 nd IF
19	Video output CVBS
20	Supply voltage $\mathrm{V}_{\mathrm{S} 1}$
21	AF sound output / FM MPX

2.3. Types

Tunertype	3×8168	3×8292
Sockettype	IEC connectors	Phono sockets

3. Working Data:

3.1. Reception Standard:

3. 2. Frequency Range:

VHF low	ch IA ...S6	$45.75 \mathrm{MHz} \ldots 140.25 \mathrm{MHz}$
VHF high	ch S7 ...S41	$147.25 \mathrm{MHz} \ldots 463.25 \mathrm{MHz}$
UHF	ch $21 \ldots 69$	$471.25 \mathrm{MHz} \ldots 855.25 \mathrm{MHz}$
FM		$87.50 \mathrm{MHz} \ldots 108.10 \mathrm{MHz}$

Margin:

VHF low	ch IA \ldots	S6	$+0.5 \mathrm{MHz} /-0.25 \mathrm{MHz}$
VHF high	ch S7...	S41	$+1 \mathrm{MHz} /-6 \mathrm{MHz}$
UHF	ch $21 \ldots$	69	$+3 \mathrm{MHz} /-6 \mathrm{MHz}$
FM			$+/-0.5 \mathrm{MHz}$

Recommened take over frequencies:

VHF low / VHF high
141 MHz
VHF high/ UHF
B/G, I, D/K, L, L`
+0.5 MHz/-0.25 MHz

- MHz-6 MHz
+/- 0.5 MHz

Frequency referred to picture carrier.
IF:

	B, G	I	L	L`	D/K
picture carrier	38.9	38.9	38.9	33.90	38.9
sound carrier 1	33.4	32.9	32.4	40.40	32.4
sound carrier 2	33.16				
NICAM sound carrier	33.05	32.348	33.05		33.05

all frequencies in MHz
Oscillator operates above received frequency.

3.3. Supply voltage:

Supply voltage $\mathrm{V}_{\mathrm{S} 1}$
$5 \mathrm{~V}+/-5 \% \quad \max .230 \mathrm{~mA}$

3.4. Input impedance:

VHF/UHF and FM
75Ω, unbalanced

3.5. Temperature:

Operating temperature:
Storage temperature:
$0 \ldots 60^{\circ} \mathrm{C}$
(measured in slowly moved air)

4. Test conditions:

If not otherwise noticed all data are hold under following conditions:

Measurement tolerance:
Ambient temperature:
Supply voltage:
10% or 1 dB
$25^{\circ} \mathrm{C}+/ 3^{\circ}$
$\vee_{\mathrm{S} 1}{ }^{+/-5 \%}$

5. TV Tuner Data:

5.1. VSWR:

VHF low
min. typ. max. unit

VHF high
5.0

UHF
5.0

Referred to channel center frequency.

5.2. AGC-Range:

VHF low	40	$d B$
VHF high	40	$d B$
UHF	35	$d B$
FM	40	$d B$

5.3. IF-Rejection:

VHF low	50	$d B$
VHF high	60	$d B$
UHF	60	$d B$
FM	50	$d B$

5.4. Image-Rejection:

VHF low		60	$d B$
VHF high	ch S7 \ldots. ch S20	60	dB
VHF high	ch S21 \ldots. ch S41	55	dB
UHF		50	dB
FM		50	dB

broadband media access for the new century

6. TV Output parameter:

6.1. Video output:

Conditions:
Standard B/G; Ant. input level $66 \mathrm{~dB} \mu \mathrm{~V}$
CVBS - Output level (B/G, D/K, L/L'):
(Standard I):
Load impedance
Video S/N (unweighted):
Flat Field
VHF
UHF
Video sensitivity (Off Air Channels)
Video $\mathrm{S} / \mathrm{N}=30 \mathrm{~dB}$
Frequency response:
$(\sin \mathrm{x}) / \mathrm{x}$ Ref.: 0.2 MHz
$1 \mathrm{MHz}-1.5$
2 MHz
3 MHz
4 MHz
4.43 MHz

5 MHz
sound carrier rejection
B/G 30
I, D/K, L/L'
26

Differential gain modulated 5 step staircase
Differential phase modulated 5 step staircase
-2
-4
-4
-5
min. typ. max. unit $1 \quad \mathrm{~V}_{\mathrm{pp}}$ 0.9 75

46 dB dB $\mathrm{dB} \mu \mathrm{V}$
-12
dB
dB
3
dB
4
dB
3
dB
dB
47

45
dB
dB

3

5
\%pp
${ }^{\circ} \mathrm{pp}$

6.2 TV Sound output:

Pin 21		min.	typ.	max.	unit
Load	DC	100		$\mathrm{k} \Omega$	
	AC	10		$\mathrm{k} \Omega$	
Output level:	DC		2.3	V	

6.2.1 TV FM sound

Conditions:

Ant.input level $66 \mathrm{~dB} \mu \mathrm{~V}$; Video signal: color bar
Audio signal $1 \mathrm{kHz}, 27 \mathrm{kHz}$ deviation; $50 \mu \mathrm{~s}$ preemphasis
Measurements with 50μ s deemphasis:
AF - level:
THD:
S / N :
Frequency response: 40 Hz ... 15 kHz
(6 kHz deviation)

6.2.2 TV AM sound

input level $66 \mathrm{~dB} \mu \mathrm{~V}$, video signal: color bar audio signal 1 kHz AM 54% modulation
AF - level:
THD:
S/N:

6.3. 2nd IF output

AC level of $\mathrm{SC}_{1} 5.5,6.0,6.5 \mathrm{MHz}$:
(PC/ sound carrier SC_{1} : $7,10,13 \mathrm{~dB}$)
(sound carrier SC_{2} off)
AC level of $\mathrm{SC}_{1} 6.5 \mathrm{MHz}$:
(PC/ sound carrier: 10 dB)
(L standard, without modulation)
AC level of $\mathrm{SC}_{2} 5.74,6.55 \mathrm{MHz}$:
(PC/ sound carrier $\mathrm{SC}_{1}: 10 \mathrm{~dB}$)
($\mathrm{PC} /$ sound carrier $\mathrm{SC}_{2}: 20 \mathrm{~dB}$)
Load impedance
$\mathrm{mV}_{\text {rms }}$
0.5 \%
dB
dB
1
$\mathrm{k} \Omega$
V
$m V_{p p}$
$m V_{p p}$

125
$m V_{p p}$
50
dB

$$
m V_{p p}
$$

$\mathrm{k} \Omega$

7. FM part

7.1 FM output				
	min.	typ.	max.	unit
7.1.1 Frequency range	87.5		108.1	MHz
7.1.2 Output levels				
$\mathrm{AF}=1 \mathrm{kHz}, 75 \mathrm{kHz}$ deviation				
MPX AC		810		mVrms
DC		2.3		V
Load impedance		100		$\mathrm{k} \Omega$
L, R resp. AC		255		mVrms
DC		1.0		
Load impedance		100		$\mathrm{k} \Omega$
7.1.3 Frequency response				
40 Hz to 15 kHz	-2		2	dB
7.1.4 Usable sensivity				
$30 \mathrm{~dB} \mathrm{S/N}$		5		$\mathrm{dB} \mu \mathrm{V}$
50 dB S/N		15		$\mathrm{dB} \mu \mathrm{V}$
7.1.5 S / N at high input level		65		dB
$\mathrm{Vin}=60 \mathrm{~dB} \mu \mathrm{~V}$, Mod. $=1 \mathrm{kHz}$ 75 kHz deviation				
7.1.6 Distortion at high input level 22.5 kHz deviation		0.2		\%
7.1.7 Stereo channel separation		30		dB
7.1.8 AM suppression Vin 60 dBuV 75 kHz dev. AM 30\%		60		dB
7.1.9 Image rejection unwanted signal 66.6 MHz above wanted signal	53	80		dB
7.1.10 IF rejection referred to 33.3 MHz unwanted signal	50			dB

8. $I^{2} \mathrm{C}$ bus

There are two different $I^{2} \mathrm{C}$ bus used one $\mathrm{I}^{2} \mathrm{C}$ Tuner to control tuning and one $\mathrm{I}^{2} \mathrm{C}$ IF to control IF demodulation and baseband processing. With port P0 of control byte 2 the slave address of I ${ }^{2}$ C IF can be controlled.

$8.11^{2} \mathrm{C}$ Tuner

8.1.1 Write data format

	MSB							LSB	
Address byte	1	1	0	0	0	MA1	MA0	R/W	A
Divider byte 1	0	n 14	n 13	n 12	n 11	n 10	n 9	n 8	A
Divider byte 2	n 7	n 6	n 5	n 4	n 3	n 2	n 1	n 0	A
Control byte 1	1	CP	T2	T 1	T0	RSA	RSB	OS	A
Control byte 2	P7	P6	P5	P4	P3	P2	P1	P0	A

A = Acknowledge
R/W = 0 : Write mode
CP = 1 : charge pump current high
$\mathrm{T} 2, \mathrm{~T} 1, \mathrm{~T} 0=$ test bits, normal operation: $\mathrm{T} 2=0, \mathrm{~T} 1=0, \mathrm{~T} 0=1$
RSA, RSB bits for minimum step size, see 8.1.2
$\mathrm{OS}=$ tuning voltage switch, normal operation: $\mathrm{OS}=0$

8.1.2 Address selection

MA1	MA0	Address	Voltage at Pin 11
0	0	C0	$(0 \text { to } 0.1)^{*} V_{\mathrm{S} 1}$
0	1	C2	$(0.2 \text { to } 0.3)^{*} \mathrm{~V}_{\mathrm{S} 1}$ or open
1	0	C4	$(0.4 \text { to } 0.6)^{*} \mathrm{~V}_{\mathrm{S} 1}$
1	1	C6	$(0.9 \text { to } 1)^{*} \mathrm{~V}_{\mathrm{S} 1}$

8.1.3 Oscillator frequency and divider byte calculation:

RSA	RSB	Reference divider	Min. tuning step $[\mathrm{kHz}]$	$\mathrm{f}_{\text {ref }}[\mathrm{kHz}]$
1	1	512	62.5	7.8125
X	0	640	50.0	6.25
0	1	1024	31.25	3.90625

for FM recption we recommend 50 kHz minimum step size
$f_{\text {OSC }}=f_{D}+f_{\text {IF }}$
$\mathrm{f}_{\mathrm{IF}}=38.9 \mathrm{MHz}$ at $\mathrm{B} / \mathrm{G}, \mathrm{D} / \mathrm{K}, \mathrm{I}, \mathrm{L}$
$\mathrm{f}_{\mathrm{IF}}=33.9 \mathrm{MHz}$ at L^{\prime}
$\mathrm{f}_{\mathrm{IF}}=33.3 \mathrm{MHz}$ at FM
$\mathrm{f}_{\mathrm{f} c}$: Local oscillator frequency
$\mathrm{f}_{\mathrm{D}} \quad$: Desired frequency
$f_{\text {OSC }}=f_{\text {REF }}$ * 8 * $\mathbf{S F}$
$\mathrm{f}_{\text {REF }}$: Crystal reference frequency $/ 640=4 \mathrm{MHz} / 640=6.25 \mathrm{kHz},(\mathrm{RSA}=\mathrm{X}, \mathrm{RSB}=0)$
SF : Programmable scaling factor

Scaling factor

SF= 16384* n14 + 8192 * n13 * 4096 * n12 + 2048 * n11 + 1024 * n10 + 512 * n9 + 256* n8 + 128 * n7 + 64 * $n 6+32$ * $n 5+16$ * $n 4+8$ * $n 3+4$ * $n 2+2$ * $n 1+n 0$

8.1.4 Control byte 1 settings (default)

	MSB							LSB	
Control byte 1	1	0	0	0	1	X	0	0	A

8.1.5 Control byte 2 (Bandselection)

Band	Active port	P7	P6	P5	P4	P3	P2	P1	P0
VHF low	P7, P5	1	0	1	0	0	0	0	MAD
VHF high	P7,P4	1	0	0	1	0	0	0	MAD
UHF	P5,P4	0	0	1	1	0	0	0	MAD
FM	P7, P5, P2	1	0	1	0	0	1	MS	MAD

MAD: Programmable module address $I^{2} C$ IF
$0=$ Slave address $I^{2} \mathbf{C}$ IF $=43[$ hex]
1 = Slave address I ${ }^{2} \mathbf{C}$ IF = 42[hex]
MS: Forced Mono at FM mode:
$0=$ Stereo Mode with capability of stereo indication
1 = Forced Mono Mode

8.1.6 Read data format

	MSB							LSB	
Address byte	1	1	0	0	0	MA1	MA0	R/W	A
Status byte	POR	FL	12	I1	I0	A2	A1	A0	A

R/W : 1 = Read mode
POR: Power on reset flag ($\mathrm{POR}=1$ at power on)
FL: In lock flag ($F L=1$ when PLL is locked)
I2, I1, IO: Digital levels for I/O ports P2, P1 and P0 respect.
In case of FM I1 = 1: Stereo indication
I2, IO not defined
A2, A1, A0: FM-AFC or FM-AGC or SIF-AGC radio output detection

A2	A1	A0	SIF-AGC radio output *1)	FM-AGC radio output *2)	FM-AFC radio output *3)
1	0	0	not defined	not defined	-100 kHz
0	1	1	$>20 \mathrm{~dB} \mu \mathrm{~V}$	normal signal	-35 kHz
0	1	0	$5 \mathrm{~dB} \mu \mathrm{~V} \ldots 20 \mathrm{~dB} \mu \mathrm{~V}$	weak signal	Correct tuning
0	0	1	$<5 \mathrm{~dB} \mu \mathrm{~V}$	very weak signal	+35 kHz
0	0	0	not defined	not defined	+100 kHz

*1) typical values, peak level detection within a bandwith of appr. 2 MHz
*2) only valid if FM-carrier exist and SIF-AGC radio output $=(A 2=0, A 1=1, A 0=1)$
*3) typical values, only valid if CARRDET = high, see section 8.3.2

8.2. ${ }^{12} \mathrm{C}$ IF

8.2.1. ${ }^{2} \mathrm{C}$-bus sequence write

Start	Slave addr.	R/W $=0$	Ack	subaddress	Ack	data	Ack	Stop

Start	start condition.
Slave addr	Slave address (7bit) $=42$ [hex] or 43 [hex] in respect of MAD.
R/W	Read/Write bit: $0=$ write to component; 1 = master reads from component.
Subaddress	byte which indicates register of component which the are data for.
	"switching register" 00[hex]
	"adjust register" 01[hex]
	"data register" 02[hex]
Ack	acknowledge generated by the component
Stop	stop condition

If more than one byte of data is transmitted, then auto-increment of subaddress is performed. i.e. transmit 3 bytes starting with data for switch register

mode	Slave addr + R/W =0	Subaddress	switch reg.	adjust reg.	data reg.
	MAD=0 / MAD=1				
B/G	86 / 84	00	D4	70	09
1	86 / 84	00	D4	70	0A
D/K	86 / 84	00	D4	70	0B
L	86 / 84	00	C4	10	OB
L'	86 / 84	00	84	10	13
FM - AFC	86 / 84	00	DC	70	1D
FM - AGC	86 / 84	00	DC	70	9D
SIF - AGC	86 / 84	00	DC	70	81
FM - AFC stereo	86 / 84	00	DC	10	1D
FM - AGC stereo	86 / 84	00	DC	10	9D
SIF - AGC stereo	86 / 84	00	DC	10	81

all bytes in [hex]
broadband media access for the new century

8.2.2 switch register

acc. Chapter 8.2.1 switch register is addressed by subaddress 00 [hex]
switch register

Carrier mode

0	intercarrier
1	QSS

Modulation

0	0	Positive AM TV
1	0	Negative TV
x	1	FM Radio

Forced mute audio
0

Output port 1 (Audio-SAW switch)

0	L'
1	B/G, D/K, I, L

Output port 2 (not used)

0	Low ohmic active
1	High ohmic disabled

Recommended settings switch register

mode	B7	B6	B5	B4	B3	B2	B1	B0	$=[\mathrm{hex}]$
B/G	1	1	0	1	0	1	0	0	D4
I	1	1	0	1	0	1	0	0	D4
D/K	1	1	0	1	0	1	0	0	D4
L	1	1	0	0	0	1	0	0	C4
L`	1	0	0	0	0	1	0	0	84
FM	1	1	0	1	1	1	0	0	DC

broadband media access for the new century

8.2.3 Adjust register

acc. Chapter 8.2.1 adjust register is addressed by subaddress 01 [hex]
Adjust register
C7 C6

Value of de-emphasis

0	75 us
1	50 us

Audio gain

0	0 dB
1	-6 dB

Recommended settings adjust register

mode	C7	C6	C5	C4	C3	C2	C1	C0	=[hex]
B/G	0	1	1	1	0	0	0	0	$\mathbf{7 0}$
\mathbf{I}	0	1	1	1	0	0	0	0	$\mathbf{7 0}$
D/K	0	1	1	1	0	0	0	0	$\mathbf{7 0}$
L	0	0	0	1	0	0	0	0	$\mathbf{1 0}$
L	0	0	0	1	0	0	0	0	$\mathbf{1 0}$
FM	0	1	1	1	0	0	0	0	$\mathbf{7 0}$
FM stereo	0	0	0	1	0	0	0	0	$\mathbf{1 0}$

8.2.3 data register

acc. Chapter 8.2.1 data register is addressed by subaddress 02 [hex]
data register

VIF, SIF, tuner gain

0	Normal gain
1	Minimum gain

Gating (pos. AM)

0	0%
1	36%

VIF AGC output - TV Mode: B3=0

0	Normal port function (Output port2)
1	No port function

PIN 21 output - Radio Mode: B3=1
$0 \quad$ FM-AFC radio output
1 FM-AGC or SIF-AGC radio output acc. E2...E4

Recommended settings data register

mode	E7	E6	E5	E4	E3	E2	E1	E0	$=[\mathrm{hex}]$
B/G	0	0	0	0	1	0	0	1	09
\mathbf{I}	0	0	0	0	1	0	1	0	0A
D/K	0	0	0	0	1	0	1	1	0B
L	0	0	0	0	1	0	1	1	0B
L`	0	0	0	1	0	0	1	1	13
FM-AFC	0	0	0	1	1	1	0	1	1D
FM-AGC	1	0	0	1	1	1	0	1	9D
SIF-AGC	1	0	0	0	0	0	0	1	$\mathbf{8 1}$

8.3.1. $1^{2} C$-bus sequence read

Start	Slave addr.	R/W =1	Ack	data	Ack not	Stop

Start	start condition.
Slave addr	Slave address = 43[hex].
R/W	Read/Write bit: $0=$ write to component; 1 = master reads from component.
Ack	acknowledge, generated by the component
Ack not	acknowledge, generated by the master
Stop	stop condition

8.3.2 Read data format

Status register

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

AFC value
AFC4 \quad AFC3 \quad AFC2 \quad AFC1
CARRDET - FM carrier detection

0	FM carrier not detected
1	FM carrier detected

VIFLEV - VIF level input

0	VIF low level
1	VIF high level

AFCWIN - AFC window (Note 1)

0	Tuning out of window $(+/-1.6 \mathrm{MHz})$
1	Tuning in window $(+/-1.6 \mathrm{MHz})$

Note1. If no IF input is applied, then bit AFCWIN = 1 due to the fact that the VCO is forced to the AFC window border for fast load-in behaviour.

Automatic Frequency Control fVIF Versus f_{0}	AFC4	AFC3	AFC2	AFC1
$\mathrm{f}_{\mathrm{VIF}} \leq \mathrm{f}_{0}-187.5 \mathrm{kHz}$	0	1	1	1
$\mathrm{f}_{\text {VIF }}=\mathrm{f}_{0}-162.5 \mathrm{kHz}$	0	1	1	0
$\mathrm{f}_{\text {VIF }}=\mathrm{f}_{0}-137.5 \mathrm{kHz}$	0	1	0	1
$\mathrm{f}_{\text {VIF }}=\mathrm{f}_{0}-112.5 \mathrm{kHz}$	0	1	0	0
$\mathrm{f}_{\text {VIF }}=\mathrm{f}_{0}-87.5 \mathrm{kHz}$	0	0	1	1
$\mathrm{f}_{\mathrm{VIF}}=\mathrm{f}_{0}-62.5 \mathrm{kHz}$	0	0	1	0
$\mathrm{f}_{\mathrm{VIF}}=\mathrm{f}_{0}-37.5 \mathrm{kHz}$	0	0	0	1
$\mathrm{f}_{\text {VIF }}=\mathrm{f}_{0}-12.5 \mathrm{kHz}$	0	0	0	0
$\mathrm{f}_{\text {VIF }}=\mathrm{f}_{0}+12.5 \mathrm{kHz}$	1	1	1	1
$\mathrm{f}_{\text {VIF }}=\mathrm{f}_{0}+37.5 \mathrm{kHz}$	1	1	1	0
$\mathrm{f}_{\mathrm{VIF}}=\mathrm{f}_{0}+62.5 \mathrm{kHz}$	1	1	0	1
$\mathrm{f}_{\text {VIF }}=\mathrm{f}_{0}+87.5 \mathrm{kHz}$	1	1	0	0
$\mathrm{f}_{\mathrm{VIF}}=\mathrm{f}_{0}+112.5 \mathrm{kHz}$	1	0	1	1
$\mathrm{f}_{\text {VIF }}=\mathrm{f}_{0}+137.5 \mathrm{kHz}$	1	0	1	0
$\mathrm{f}_{\mathrm{VIF}}=\mathrm{f}_{0}+162.5 \mathrm{kHz}$	1	0	0	1
$\mathrm{f}_{\text {VIF }} \geq \mathrm{f}_{0}+187.5 \mathrm{kHz}$	1	0	0	0

9. ESD Protection

The frontend contains components that can be damaged by static discharge.
Observe these precautions: Ground yourself before handling the frontend.
Do not touch the frontend connector pins without ESD protection.

NAME	J. Kreil					
DATE	07.November 2002 REV.:					
01						
FÄM.- NO.						
DATE	07.11 .2002					
NAME	J. Kreil					
SIGNATURE						

